PARURGONINA VALANGINIANA N. SP. FROM THE VALANGINIAN OF SW IRAN (ZAGROS ZONE): THE FIRST CRETACEOUS RECORD OF THE GENUS

Felix Schlagintweit\(^1\), Mohsen Yazdi-Mohghadam\(^2,3\), Bruno R.C. Granier\(^4\) & Roholah Hosseinzadeh\(^2\)

Received: 31 July 2023 / Accepted: 21 September 2023 / Published online: 18 October 2023

Abstract. The new larger benthic foraminifer *Parurgonina valanginiana* is described from the Valanginian deposits of the Fahliyan Formation of southwestern Iran (Zagros Zone). It is separated from the uppermost Oxfordian-lowermost Tithonian generotype *P. caelinensis* (Cuvillier et al.) by a distinct time gap. The Lower Cretaceous specimens exhibit a larger embryonic chamber whereas the internal structural and other biometric data are generally in conformity with the Upper Jurassic morphotypes. Besides the Middle Jurassic *P. primae*a Camou & Peybernès and the Upper Jurassic *P. caelinensis*, *P. valanginiana* sp. nov. represents the third species of the genus described and possibly a Valanginian marker endemic for the Arabian Plate. In the Fahliyan Formation, *P. valanginiana* sp. nov. occurs in wackestones associated with *Pseudocyclammina litus* (Yokoyama). Additional data for the micropaleontological assemblages (benthic foraminifera, calcareous algae) of the shallow-water carbonates of the Fahliyan Formation are provided. As it is also the case in the United Arab Emirates (Granier, 2008), it is proposed that the Tithonian/Berriasian boundary does not, as generally indicated in the literature, coincide with the boundary of the Hith Formation and the Fahliyan Formation, but instead occurs within the latter. The new find provides further evidence that the Tithonian/Berriasian boundary did not represent a major rupture or extinction for larger benthic foraminifera. On the contrary, the Berriasian/Valanginian boundary corresponds to a natural discontinuity (both sedimentological and biological) possibly enhanced by a hiatus of the upper Berriasian strata. The foraminiferal diversity remains quite high during early Valanginian times then falls drastically, which suggests that the Berriasian/Valanginian boundary is a double barrelled crisis (first base Valanginian, second intra-Valanginian).

Keywords: Larger Benthic Foraminifera, phylogeny, biostratigraphy, Upper Jurassic, Lower Cretaceous

INTRODUCTION

In previous times, the boundary between the Jurassic and the Cretaceous Period (~145 Ma) has been considered as one of the eight mass extinction events in earth history (e.g., Raup & Sepkoski, 1982), a view that today has one of the eight mass extinction events in earth history the Cretaceous Period (~145 Ma) has been considered an extinction event. The foraminiferal diversity remains quite high during early Valanginian times then falls drastically, which suggests that the Berriasian/Valanginian boundary is a double barrelled crisis (first base Valanginian, second intra-Valanginian).

The Iran plateau consists of different structural units, including the Alborz and Kopet Dagh ranges in the northern part of the country, the Zagros fold and thrust belt and the Sanandaj-Sirjan Zone in the southern part, separated by the Central Iran region in the middle part (Fig. 1A). Following the closure of the Neotethys ocean

\(^1\) Lerchenauestr. 167, 80935 München, Germany; felix.schlagintweit@gmx.de

\(^2\) National Iranian Oil Company Exploration Directorate, Tehran, Iran; mohsen.moghadam@gmail.com, hosseinzadeh.rula@gmail.com

\(^3\) School of Earth Sciences, Damghan University, 3671641167 Damghan, Iran

\(^4\) Dept. STU, Fac. Sci. Tech., UBO, 6 avenue Le Gorgeu, CS 93837, 29238 Brest, France; bgranier@univ-brest.fr

* Corresponding author
during the Late Cretaceous, the Zagros fold and thrust belt formed along the Arabian-Eurasian collision zone (e.g., Berberian & King, 1981; Golonka, 2004). The belt, which stretches in a SE-NW direction, is located within the Alpine-Himalayan Orogenic system at the eastern margin of the Arabian Plate. The Zagros belt was affected by major tectonic compressions from the Oligocene to the Holocene, which led to the formation of the present-day Zagros Chain, including large-scale anticlines and fold-and-thrust belt features (Heydari, 2008). Deposition within the belt from the latest Precambrian to the Holocene has resulted in the presence of an extensive sedimentary column which is estimated to be up to 10 km-thick (Motiei, 1993; Sherkati & Letouzey, 2004; Heydari, 2008). Based on its structural style and sedimentary history, the Zagros belt can be subdivided into several tectono-stratigraphic units, including Fars Province (Interior Fars and Coastal Fars), Dezful Embayment, Izeh Zone, High Zagros, Lurestan Province, and Abadan Plain. (e.g., Falcon, 1974; Motiei, 1993, Sherkati & Letouzey, 2004; Heydari, 2008). A thick succession accumulated in different tectono-sedimentary environments, ranging from shallow carbonate platforms to deep subtidal basins. Some are separated by major unconformities (Berberian & King, 1981; Motiei, 1993; Heydari, 2008). The section described in this study is located in the west of the Coastal Fars Zone (Figs. 1B-C). The Fars area, as part of the Zagros simply folded belt and the Arabian Plate, is characterized by the occurrences of extensive shallow-water carbonate deposits of the Upper Jurassic–Lower Cretaceous Khami group containing rich assemblages of benthic foraminifera and calcareous algae. The material of this study comes from one surface section of the Fahlalian Formation in the Zagros belt, named Kuh-e Siah (28°47'46"N 51°33'43"E) (Fig. 1). It is located at the southern flank of the Kuh-e Siah anticline, in the west of the Coastal Fars Zone, approximately 65 kilometer east of Boushehr, and 8 km southeast of Faryab city.

Fig. 1A. Simplified geological map of Iran (modified after Schlagintweit and Yazdi-Moghadam, 2021) showing the main tectonic subdivisions. **B.** Road map and position of the studied section. **C.** Tectono-stratigraphic units of the Zagros belt (modified after Yazdi-Moghadam and Schlagintweit, 2021) with position of the Kuh-e Siah section. Abbreviations: BF Balarud Fault, CEIM Central East Iran Microplate, HZF High Zagros Fault, KZF Kazerun Fault, MFF Mountain Front Fault, MZR Main Zagros Revers Fault, MZT Main Zagros Thrust, SSZ Sanandaj-Sirjan Zone, UDMA Uromia Dokhtar Magmatic Arc, ZFTB Zagros Fold Thrust Belt.
The section has been studied previously by Jamalian et al. (2011). The 304-m-thick Fahliyan Formation in this area rests conformably on evaporites of the Hith Formation and is unconformably overlain by thin-bedded dolomitic limestones of the Gadvan Formation. The Fahliyan Formation in this area consists mainly of thick to medium-bedded limestones, and argillaceous and dolomitic limestones containing a rich assemblage of benthic foraminifera and calcareous green algae (Fig. 2). The new taxon Parurgonina valanginiana was recorded (Fig. 2).
in the middle and upper parts of the Fahliyan Formation
associated with Pseudocyclammina lituus (Yokoyama),
Charentia cuvillieri Neumann, Praechrysalidina ? sp.,
Cosinoaconus alpinus Leupold, C. cf. campanellus
(Arnaud-Vanneau et al.), C. cf. cherchie (Arnaud-
Vanneau et al.), C. cf. chouberti (Hottinger), C. cf.
molestus (Gorbachik), C. delphinensis (Arnaud-Vanneau et al.),
C. sagittarius (Arnaud-Vanneau et al.),
Actinoporella sp., A. cf. jaffrezo! Granier, Clypeina cf.
dragastani Dieni & Radoi,
. aff. estevezii Granier,
?Iranella inopinata Golleston,
Permocaculus sp.,
Salpingoporella annulata Carozzi,
C. circassia Farinacci & Radoi,
S. kateri Conrad & Radoi,
and Salpingoporella piriniae Carras & Radoi (Fig. 3).
Almost all of these taxa have already been recorded from
the Fahliyan Formation. (Hosseini & Conrad, 2008;
Jamalain et al., 2011; Hosseini et al., 2016; Esrafil-Dizaji et al.,
2020). P. valanginiana sp. nov. has already been
described from the Fahliyan Formation as
‘Pseudochrysalidina arabicus’ Henson by Shakib (1994)
and from the Kuh-e Siah section as the orbitolinid
‘Valdanchella’ by Jamalain et al. (2011) (see synonymy).
In Saudi Arabia, an equivalent section with similar faunal
and floral assemblages is known as Buwaib Formation
(e.g., Deville de Périère, 2023), but published literature
on its microfaunal and microfloral content, supporting
this equivalency is scarce. Maybe it can be compared
with the Zakum Formation (= Thamama IV of Abu
Dhabi).

MATERIAL, METHODS AND REPOSITORY

The material of this study is based on specimens from
random cuts of 176 thin sections belonging to 89
cemented carbonate rock samples (wacke- to packstone)
of the Fahliyan Formation. Parargonia valanginiana sp.
was found in three samples (RAP10825, RAP10827,
RAP10869), including six thin sections. The samples and
thin sections are housed in the collection of the National
Iranian Oil Company Exploration Directorate
(NIOCEXP) under the acronym RAP (Kuh-e Siah
section).

SYSTEMATIC PALAEOONTOLOGY

The high-rank classification (Phylum–Class) follows
Pawlowski et al. (2013). For the low-rank classification
see Kaminski (2014). For Superfamily and Family see
Remarks.

Phylum Foraminifera Orbigny, 1826
Class Globothalamaea Pawlowski et al., 2013
Order Loftusiida Kaminski & Mikhaevich in Kaminski,
2004
Suborder Orbitolinina Kaminski, 2004
?Superfamily Coskinolinioidea Moullade, 1965
?Family Coskinolinidae Moullade, 1965

Remarks: The genus Parargonia has been included in
the family Orbitolinidae by Cuvillier et al. (1968). The
presence of a pseudo-keriothecal wall structure, however,
excludes its belonging to this family (Schroeder in
Schroeder et al., 1975). Schroeder confirmed the presence
of discoidal (uniserial) chambers in the adult test part,
as reported previously by Cuvillier et al. (1968) following
a short trochospiral (‘helicospiral’) early stage. Loeblich
and Tappan (1987, p. 185) placed Parargonia in
the family Chrysalidinidae (Neagu 1968), which is defined as
“triserial, later biserial”, and with canaliculated walls,
although their diagnosis of Parargonia states that there
are “rectilinear discoidal chambers” in the adult stage
248) created the Parargoniae as a subfamily within the
family Valvulinidae. Berthelin 1880 thereby claiming a
trochospiral coiled test throughout (eight or more
chambers in the adult stage) (= Jurassic ‘praevalvulinids’)
in Septfontaine, 2020, tab. 8.4). In fact, the two transverse
sections illustrated in Schroeder et al. (1975, pl. 2, figs. 3-
4) and re-illustrated herein Fig. 5i, l, might imply the
existence of a biserial coiling mode. This impression,
however, might also be due to the convexity (in direction
to the cone base) of the septa. In the current classification
of Kaminski (2014), the Parargoniae was given family
status (Parargoniidae). In our material of P. valanginiana
and other illustrated specimens in the literature, a uniserial main part of the test is evident (Fig.
4). Therefore, Parargonia shares characters of both
Chrysalidinidae (trochospiral ‘helicospiral’ early stage)
and Coskinolinidae (uniserial adult part). The undivided
part of the marginal chamber, the presence of marginal
foramina and the pseudo-keriothecal wall are present in
both families (e.g., Hottinger & Drobane, 1980; De Castro,
1981; Banner et al., 1991; Septfontaine, 2020). Parargonia is herein placed tentatively within the
superfamily Coskinolinioidea Moullade, 1965 and the
family Coskinolinidae Moullade, 1965. According to our
interpretation, the family Parargoniidae Septfontaine,
1988 with its only genus Parargonia would then
become obsolete (see also Kaminski, 2014). It is worth
mentioning in this context that specimens of Parargonia caelinensis from the Upper Jurassic of Greece were
named ‘Coskinolines’ by Bassoullet & Guernet (1970)
(Schroeder in Schroeder et al., 1975).

Genus Parargonia Cuvillier et al., 1968
Type-species: Parargonia caelinensis (Cuvillier et al.,
1968)
Parargonia valanginiana sp. nov.
Figs. 4c, 5-6
1994 Pseudochrysalidina arabicus Henson – Shakib, pl.
7.3, fig. 10.
2011 Valdanchella – Jamalain et al., fig. 7n, fig. 12a-c.
2016 Falsurgonia piteola – Hosseini et al., fig. 7d-f.

34
Fig. 3. Selected dasycladalean algae (a–j, l, m, q) and benthic foraminifera (k, n–p, r) from the Berriasian–Valanginian Fahliyan Formation of SW Iran. a. Salpingoporella annulata Carozzi, sample RAP 1819. b. Aloisialtella sulcata (Alth) (right) and Campbelliella striata (Carozzi) (middle), sample RAP 10804. c. Humiella cf. catenaformis (Radoičić), sample RAP 10798. d, l. Salpingoporella granieri Dieni & Radoičić, samples RAP 10835 (D) and RAP 10825 (L). e, h, m. Clypeina sp. or Salpingoporella sp., or Iranella inopinata sensu Hosseini et al. (2013), sample RAP 1028. f. Actinoporella cf. podolica (Alth), sample RAP 10860. g. Clypeina aff. dragastani Dieni & Radoičić, sample RAP 10820. i, q. Salpingoporella piriniae Carras and Radoičić, sample RAP 10828. j. Actinoporella ? sp. aff. jaffrezoii Granier, sample RAP 10851. k. Coscinoconus alpinus Leupold, sample RAP 10824. n. Coscinoconus cf. sagittarius (Arnaud-Vanneau et al.), sample RAP 10850. o. Coscinoconus cherchiae (Arnaud-Vanneau et al.), sample RAP 10866. p. Choffatella decipiens Schlumberger, sample RAP 10881. r. Pseudocyclammina lituus (Yokoyama), sample RAP 10819. Scale bars = 0.20 mm.
2016 *Falsurgonina pileola* – Hosseini et al., fig. 7d-f.
2020 *Pseudochrysalidina arabica* – Esrafili-Dizaji et al., fig. 6A.

Origin of the name: Referring to the Valanginian stage.
Horizon and locality: Valanginian carbonates of the Fahliyan Formation from the Kuh-e Siah section (Figs. 1-2).
Holotype: Slightly oblique axial section shown in fig. 5e; sample RAP 10825.
Description: Test high-conical with almost plane or convex base, starting with a comparably large embryonic chamber (protoconch) which is situated in a (sub)apical position (Fig. 5a-d). It is followed by a second, also comparatively large, hemispherical to lunular to hemispherical chamber laterally attached to the former (Fig. 5a-e) (= deuteroconch in Cuvillier et al., 1968, p. 150). Both chambers are connected by a single pore (Fig. 5a). These in turn are followed by a short trochospiral (‘helicospiral’) early stage with numerous chambers that apparently lack endoskeletal pillars.

Adult stage is rectilinear with up to 16 chambers and oblique stolon systems (Fig. 6a, c). The marginal chamber part is undivided (e.g. Figs. 5g, 5i). The main central part is occupied by irregular distributed pillars showing a typical semi-lunular shape in transverse sections (Fig. 5i, 5k and 5m above) [= section courbée en forme de crochet (curved section forming a hook) Schroeder in Schroeder et al., 1975, p. 324]. As can be discerned in axial sections, the pillars are not aligned between subsequent chambers; instead they are more or less alternately arranged (e.g., Fig. 5e, 6a, 6c). They broaden (partly also fused) at the base (= pointed towards the cone base). The foramina are represented by multiple large pores irregularly piercing the septa and are linked to the lunular pillars in the central part (Fig. 5i-j, 5l). In axial sections, the foramina are arranged in oblique lines between subsequent chambers (= perforations obliques, Cuvillier et al., 1968) (Fig. 6a, c, adult part). Obliquely arranged marginal foramina are present in the adult rectilinear test part (Fig. 5e, n). The wall is thick with pseudo-keriothecal texture (Gusić, 1969; Schroeder in Schroeder et al., 1975), a feature barely discernible in the Iranian specimens.

Dimensions: See Table 1.

Fig 4. a-b. Parurgonina caelinensis (Cuvillier et al.), (modified from Velić, 2007, pl. 10, figs. 10-11) from the Upper Jurassic of Croatia and **Parurgonina valanginiana** sp. nov. (c.) from the Lower Cretaceous of Iran. Red dotted lines mark the septa of the rectilinear chambers.

Table 1. Biometric data of Upper Jurassic *P. caeliensis* (Cuvillier et al.) and lowermost Cretaceous *P. valanginiana* sp. nov. compared. * Cuvillier et al. (1968) ** Pleș et al. (2015) *** Gušić (1969 for *Lituonella dinarica*) **** measured from Schroeder et al. (1975, pl. 1, fig. 2).

<table>
<thead>
<tr>
<th>Biometric data (in mm)</th>
<th>Parurgonina caeliensis (Cuvillier et al.) latest Oxfordian – earliest Tithonian</th>
<th>Parurgonina valanginiana sp. nov. early Valanginian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test height</td>
<td>* 1.125 mm-2.437 mm ** 1.79 mm-2.18 mm *** 1.00 mm-1.80 mm</td>
<td>up to 1.81 mm</td>
</tr>
<tr>
<td>Test diameter</td>
<td>* 1.0 mm-1.375 mm ** 1.17 mm-1.64 mm *** 0.95 mm-1.60 mm</td>
<td>up to 1.47 mm</td>
</tr>
<tr>
<td>Chamber height</td>
<td>* 0.012 mm ** 0.06 mm-0.120 mm</td>
<td>0.08 mm-0.10 mm</td>
</tr>
<tr>
<td>Greatest diameter embryonic chamber</td>
<td>* 0.110 mm-0.134 mm *** 0.160 mm</td>
<td>0.145 mm-0.22 mm</td>
</tr>
</tbody>
</table>
Fig 5. Parurgonia valanginiana sp. nov. from the Valanginian Fahluyan Formation of SW Iran (a–h, j–k, m–n) and the Upper Jurassic of Algeria (i, l; from Schroeder et al., 1975, pl. 2, figs. 3-4). a–d. (Sub)axial sections of juvenile specimens showing embryo and ‘praevalvulinid’ early stage sensu Septfontaine (2020); samples RAP 10825 (a–c), RAP 10869 (d). e. Slightly oblique axial section dissection the apical embryo; holotype specimen, sample RAP 10825. f. Subaxial section showing well developed thickened pillars in the central test part; sample RAP 10825 (= Fig. 12a in Jamalian et al., 2011 illustrated as Valdanchella). g. Tangential section showing the undivided marginal chamber area in the part following the ‘praevalvulinid’ stage; sample RAP 10825. h. Tangential oblique section; sample RAP 10825. i. Slightly oblique transverse section showing lunular pillars (from Schroeder et al., 1975, pl. 2, fig. 4, copyright by Swiss Geological Society). j. Oblique section; sample RAP 10825. k. Oblique section showing lunular pillars; sample RAP 10825. l. Slightly oblique transverse section (from Schroeder et al., 1975, pl. 2, fig. 3). m. Oblique transverse section; sample RAP 18025. n. Subaxial section; sample RAP 18025 (= Fig. 7n in Jamalian et al., 2011 illustrated as Valdanchella).
Remarks: Parurgonina displays a discontinuous fossil record including Parurgonina primaeva Kamoun & Peybernès 1993 from the Middle Jurassic (upper Bajocian–lower Bathonian) to the Upper Jurassic *P. caelinensis* (uppermost Oxfordian–lowermost Tithonian, Bassoullet, 1997a; Pleš et al., 2015, 2019). In fact, the only difference between the Upper Jurassic specimens and those from the Iranian Fahliyan Formation that we could observe is the comparably large embryonic chamber(s) at the apex (Tab. 1). According to literature data, the diameter of the megalospheric embryo for *P. primaeva* is 0.200 mm and 0.110-0.160 mm for Upper Jurassic specimens of *P. caelinensis*. The large-sized embryo of the Lower Cretaceous specimens reaches up to 0.22 mm in size.

As remarked by Cuvillier et al. (1968), *Parurgonina* may be confused with the gross homeomorphic *Paravalvulina* (ex. *Dukhania* *arabica* (Henson, 1948) described from the ‘Infravalanginian’ limestones and shales containing *Pseudocyclammina lituus* of subsurface Qatar (Dhukan wells), later erroneously assigned to the Hauterivian by Banner et al. (1991) and Whittaker et al. (1998) (see next chapter for biostratigraphic remarks on genuine *Pseudocyclammina lituus*). As indicated by Banner et al.
(1991), *P. arabica* has a quadriserial (juvenile) to triserial growth (adult), lacks a pseudo-keriiothecal wall, the pillars are not triangular in axial sections (Banner et al., 1991, figs. 98, 102-104; Schroeder et al., 1975, pl. 2, fig. 1) and do not display the typical semi-lunular shape in transverse sections (e.g., fig. 4i, k). Moreover, the multiple foramina in the adult part of the central zone of *P. arabica* appear predominantly perpendicular to the septa (Banner et al., 1991, figs. 99, 102-104), while crosswise oblique in *P. valanginiana*. Another difference is that *P. valanginiana* does not show a marginal thickening of the chamber. Therefore, the chamber height remains more or less constant from the marginal to central test area as remarked by Gušić (1969, p. 69).

Like Barkerina dobrogiaca (Neagu 2000) or Valdanchella miliani (Schroeder 1968) in the middle and western parts of Neotethys, *P. valanginiana* might represent a Valanginian marker taxon endemic to the Arabian Plate.

BIOSTRATIGRAPHIC REMARKS

The Fahliyan stratigraphic unit is regarded by most Iranian geologists as a Formation. However, this lithostratigraphic unit spans several stages from the Tithonian to the Barremian. In addition, considering the occurrence of regional unconformities, the Fahliyan should have been considered as a Group and subdivided into subunits, i.e., formations. However, until recently, the Fahliyan Formation was only divided into two informal members: a Lower Fahliyan Member and an upper Fahliyan Member. As regards biostratigraphy, according to Jamalian et al. (2011), the Fahliyan Formation of the Kuh-e Siah section spans both the ‘biozone 14’ of Wynd (1965), i.e., *Pseudocyclammina lituus*-*Trocholina* assemblage zone, for the "Neocomian", and his ‘biozone 15’ (Wynd, 1965), i.e., his *Choffatella-*"Cyclammina" assemblage zone, for the Barremian - Aptian. As documented herein, ‘biozone 14’ actually spans the Tithonian – lower Valanginian interval whereas ‘biozone 15’ spans the upper Valanginian – lower Barremian interval. Besides, it is worth mentioning that the International Commission on Stratigraphy (unpublished report) has urged stratigraphers to abandon the use of the "Neocomian". Initially, the Neocomian was redefined as a superstage divided into two stages, the Valanginian and the Hauterivian, but, later its definition has changed to include the Berriasian and/or the Barremian. This instability justifies its abandonment. No further stage subdivision of the ‘Neocomian’ has been provided by Jamalian et al. (2011) or in any more recent paper (e.g., Noori et al., 2019; Abedpour et al., 2020; Esrafil-Dizaji et al., 2020). Hosseini (2014; Hosseini et al., 2016, 2021) has introduced a new formation within the Fahliyan, i.e., the Sar Bisheh Formation, and renamed the upper Fahliyan as the Ghari Formation. Although the age ascriptions (i.e., interpretations) differ, it looks like these new units should be treated as unconformity bounded units, similar to their strict equivalent counterparts in the United Arab Emirates (see Table 2).

The studied section starts on top of the Hith Anhydrite at a boundary that is conventionally but erroneously treated as the Jurassic/Cretaceous boundary auct. (i.e., the Tithonian/Berriasian boundary) in the oil and gas industry. Based on its microfossil assemblage, the “lower Fahliyan” (samples RAP 10793-10822) is dated Tithonian – Berriasian. However, it should be noted that *Campbelliella striata* (samples RAP 10796-10819) is found quite high in the interval and, to date, its range is not thought to reach the middle Berriasian (Granier, 2019). Similarly, *Humiella catanaeformis* (samples RAP 10797-10798) is found quite low in the section and, to date, its range is not thought to reach the lower Berriasian, *Aloisalthella sulcata* (samples RAP 10803-10805) and *Otternestella lemmensis* (samples 10820-10821) are known both from the Tithonian and the Berriasian. The former is unknown from the upper Berriasian strata. It is suggested that parts of the Berriasian (middle-upper or upper) could be missing in the Kuh-e Siah section.

The next interval, named here "middle Fahliyan" (samples RAP 10823-10873), is an equivalent of both the

Tabel 2. Relationship of Iranian lithostratigraphic units and their Emirati counterparts.

<table>
<thead>
<tr>
<th>IRAN</th>
<th>U.A.E.</th>
<th>Stages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gadvan</td>
<td>Kharaiib</td>
<td>Barremian - Lower Aptian</td>
</tr>
<tr>
<td>upper Fahliyan</td>
<td>Lekhwair</td>
<td>upper Valanginian - Lower Barremian</td>
</tr>
<tr>
<td>“middle” Fahliyan</td>
<td>Zakum</td>
<td>lower Valanginian</td>
</tr>
<tr>
<td>lower Fahliyan</td>
<td>Habshan Group</td>
<td>Belbazem</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bu Haseer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tithonian - Berriasian</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Habshan</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tithonian</td>
</tr>
</tbody>
</table>

39
Zakum Formation of Granier (2008) and the Sar Bisheh Formation of Hosseini (2014). Based on its microfossil assemblage, it is dated early Valanginian. It comprises the last occurrences of many species, e.g., *Pseudocyclusina litus* and of a number of *Coscinocanus* spp. and *Salpingoporella* spp. (among which *Salpingoporella annulata*). *Paragorgonia valanginiana* sp. nov. is restricted to this interval.

The last interval corresponds to the "upper Fahlbian" (samples RAP 10874-10888). It is poorly fossiliferous with rare occurrences of *Choffatella decipiens* (samples 10881), a rather long ranging foraminiferal species. Its last occurrence is Aptian (Furcata ammonite Zone in Abu Dhabi, according to Granier and Busnardo, 2013).

According to Maksoud et al. (2014), it probably first appeared "in the Valanginian because it may derive from *Choffatella pyrenaica* Peybernès, 1976". In Oman, it is reported from the Lekhwair Formation, Haueterian to early Barremian in age (Granier & Lethiers, 2017). Orbitolinids of ‘biozone 16’ of Wynd (1965), i.e., *Hensonnella-Orbitolina-Choffatella* assemblage zone, are not found at the top of the section studied. Accordingly, the upper Fahlbian cannot be accurately dated and is ascribed here a generous range spanning the upper Valanginian to lower Barremian interval.

CONCLUSION

As documented before elsewhere (Granier, 2019), it is not possible to identify the Tithonian/Berriasian boundary in the shallow-water limestones of the Zagros Mountains (Iran). In contrast, the Berriasian/Valanginian boundary is identified here because it corresponds to the marked lower/middle Fahlbian boundary with a hiatus at least equivalent to the late Berriasian. Pending new finds outside its known stratigraphic range and outside the Arabian Plate, *Paragorgonia valanginiana* nov. sp., which is probably an endemic species restricted to the middle Fahlbian, could be used as a regional marker of the lower Valanginian.

The genus *Paragorgonia* Cuvillier et al. is reported for the first time from Lower Cretaceous strata giving further evidence that the Jurassic–Cretaceous boundary (Tithonian–Berriasian) did not witness a remarkable extinction event of larger benthic foraminifera within shallow-water carbonate realms. The stratigraphic distribution of the gross homeomorphic *Parasvalvulina arabica* against *P. valanginiana* in the Arabian Plate domain need further clarification.

ACKNOWLEDGMENTS

Thanks are due to Phil Salvador who kindly checked the final version of the English text. Many thanks to the helpful comments provided by the two reviewers Ioan Bucur and George Pleş (Cluj-Napoca).

REFERENCES

Granier, B., 2019. Dual biozonation scheme (benthic foraminifera and “calcareous” green algae) over the Jurassic-Cretaceous transition. Another plea to revert the system boundary to its original Horbigny’s and Oppel’s definition. Cretaceous Research, 93: 245-274.

Lebanon, with the definition of a Jezziniyan Regional Stage.- Carnets Geol., 14 (18): 401-427 DOI: 10.4267/2042/54359

Schroeder, R., 1968. Sobre algunos foraminíferos del Valanginense de la Sierra de Valdancha (provincial de Castellón). Boletín de la Real Sociedad Española de Historia Natural (Geol.), 66, 311-318.

